
Translation-invariant models for non-commutative gauge fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 252002

(http://iopscience.iop.org/1751-8121/41/25/252002)

Download details:

IP Address: 171.66.16.149

The article was downloaded on 03/06/2010 at 06:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/25
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 252002 (7pp) doi:10.1088/1751-8113/41/25/252002

FAST TRACK COMMUNICATION

Translation-invariant models for non-commutative
gauge fields

Daniel N Blaschke1, François Gieres2, Erwin Kronberger1,
Manfred Schweda1 and Michael Wohlgenannt3

1 Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10,
A-1040 Vienna, Austria
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Abstract
Motivated by the recent construction of a translation-invariant renormalizable
non-commutative model for a scalar field [1], we introduce models for non-
commutative U(1) gauge fields along the same lines. More precisely, we
include some extra terms into the action with the aim of getting rid of the
UV/IR mixing.

PACS numbers: 11.10.Nx, 11.15.−q, 11.10.Gh

1. Introduction

Non-commuting spacetime coordinates naturally appear in various approaches to quantum
gravity, e.g. see reviews [2]. Field theories on non-commutative space generally suffer from
a new class of problematic infrared divergences which have the same degree as the usual
ultraviolet divergences at the perturbative level. This phenomenon is commonly referred
to as UV/IR mixing, see [2] and references therein. Recently, this problem was overcome
within certain models of scalar field theories. The first of these models, which was introduced
by Grosse and Wulkenhaar [3], is the φ4 theory supplemented by an oscillator term in the
Euclidean x-space action: this model has been proved to be renormalizable to all orders of
perturbation theory by different methods [4]. Since the oscillator term breaks the translational
invariance, Gurau et al [1] recently introduced another renormalizable model in which the
oscillator term in x space is replaced in the Euclidean momentum space action by a 1/k̃2

term (with k̃2 = k̃µk̃µ and k̃µ = θµνk
ν , where θµν are the non-commutativity parameters

for the Euclidean spacetime coordinates.) This term is motivated by the fact that the 1-loop
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self-energy of the standard non-commutative φ4 model has a quadratic IR divergence which is
proportional to 1/k̃2: the new term in the momentum space action yields a dressed propagator
at 1-loop level involving a similar contribution. (As a matter of fact, such a term had already
been considered earlier in connection with a resummation procedure [5, 6].)

The deformation matrix (θµν) can be (and is) assumed to have the simple form

(θµν) = θ

⎛⎜⎜⎝
0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , with θ ∈ R.

The action of Gurau et al [1] is given in Euclidean momentum space by

S =
∫

d4k

[
1

2
kµφkµφ +

1

2
m2φφ +

a

2

1

θ2k2
φφ +

λ

4!
φ � φ � φ � φ

]
, (1)

or, more explicitly [7],

S[φ̂] =
∫

d4k

[
1

2
φ̂(−k)

(
k2 + m2 +

a

θ2k2

)
φ̂(k) +

λ

4!
F (φ � φ � φ � φ) (k)

]
,

where a > 0 and where φ̂ ≡ Fφ denotes the Fourier transform of φ. This leads to the
improved propagator

Gφφ(k) = 1

k2 + m2 + a
θ2k2

, (2)

which has a ‘damping’ behaviour for vanishing momentum:

lim
k→0

Gφφ(k) = 0.

As in the Grosse–Wulkenhaar model, the UV/IR mixing is avoided due to a mixing of long
and short scales. As we already mentioned, the model defined by action (1) is translation
invariant and it has been proved to be renormalizable to all orders [1].

Before proceeding further, we briefly spell out how the term 1/k2 looks in x space. In
four dimensions, the function 1/x2 is invariant under Fourier transformation (up to a factor),
hence the term 1/k2 in action (1) can be rewritten as a non-local term:∫

d4kφ̂(−k)
1

k2
φ̂(k) ∝

∫
d4x

∫
d4x ′φ(x)

1

(x − x ′)2
φ(x ′) ≡

∫
d4xφ

1

�φ. (3)

Here, the last expression is the usual short-hand notation used in physics, where the symbol 1/�
denotes the Green function G associated with the differential operator � ≡ ∂µ∂µ = ∂2

1 +· · ·+∂2
4 :

�G(x) = δ(4)(x), with G(x) = const

x2
. (4)

As expected, matters are more complicated in gauge field theories. Although there have
been several suggestions as to how to handle the UV/IR mixing [8, 9], the corresponding
models have some drawbacks. The one introduced by Slavnov [8] relies on a constraint which
reduces the degrees of freedom of the gauge field whereas those involving an oscillator-type
term [9] (in analogy to the scalar field model of Grosse and Wulkenhaar) break the translational
invariance. Accordingly, the goal of the present communication is to put forward some
ideas for generalizing the procedure of Gurau et al in view of constructing a renormalizable
and translation-invariant model for U(1) gauge fields in four-dimensional non-commutative
Euclidean space.
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2. New gauge field model I

The quadratic IR divergence of a non-commutative U(1) gauge theory is known to be of the
form

�IR
µν ∝ k̃µk̃ν

(k̃2)2
, (5)

and to be independent of the chosen gauge fixing (see [10]). This expression motivated the
authors of [6] to introduce the following gauge invariant term into their action (in connection
with a resummation procedure):∫

d4xF̃ �
1

(D̃2)2
� F̃ . (6)

Here,

F̃ = θµνFµν, with Fµν = ∂µAν − ∂νAµ − ig[Aµ
�, Aν],

D̃2 = D̃µ � D̃µ, with D̃µ = θµνD
ν,

(7)

hence 1
D̃2 � F̃ = 1

θ2
1

D2 � F̃ . The expression 1
D2 � F̃ ≡ Y is to be understood as a formal power

series in the gauge field Aµ which may be determined recursively as follows. First, note that

F̃ = D2 �
1

D2
� F̃ = D2Y = ∂µ(DµY ) − ig[Aµ �, DµY ]

= �Y − ig∂µ[Aµ
�, Y ] − ig[Aµ �, ∂µY ] + (ig)2[Aµ �, [Aµ

�, Y ]]. (8)

By applying 1
� ≡ �−1 (i.e. the Green function of the operator �, see equation (4)) to this

relation, we find

Y = 1

� F̃ +
ig

� ∂µ[Aµ
�, Y ] +

ig

� [Aµ �, ∂µY ] − (ig)2

� [Aµ �, [Aµ
�, Y ]]. (9)

The quantity Y can be determined from this equation up to an arbitrary order:

Y (0) = 1

� F̃ ,

Y (1) = 1

� F̃ +
ig

� ∂µ

[
Aµ

�,
1

� F̃

]
+

ig

�

[
Aµ �, ∂µ

1

� F̃

]
− (ig)2

�

[
Aµ �,

[
Aµ

�,
1

� F̃

]]
,

(10)

and so on.
Next, we define the BRST transformations of the gauge field Aµ, the ghost c, the anti-ghost

c̄ and the Lagrange multiplier B as usual:

sAµ = Dµc ≡ ∂µc − ig[Aµ
�, c], sc̄ = B,

sc = igc � c, sB = 0, (11)

s2ϕ = 0 for ϕ ∈ {Aµ, c, c̄, B}.
The s variation of Aµ implies sF̃ = ig[c �, F̃ ], from which it follows (as we will now show)
that

s

(
1

D̃2
� F̃

)
= ig

[
c �,

1

D̃2
� F̃

]
. (12)

Indeed, for a field 
 transforming as F̃ , i.e.

s
 = ig[c �, 
], (13)

the field D2
 also transforms covariantly: s(D2
) = ig[c �, D2
]. From

s(D2
) = (sD2)
 + D2(s
)

3
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and the previous transformation law, we obtain the operatorial relation

(sD2)• = −ig[D2c �, •] − 2ig[Dµc �, Dµ•]. (14)

By applying the s-operator to 
 = D2 � 1
D2 � 
,

s
 = (sD2) �

(
1

D2
� 


)
+ D2 � s

(
1

D2
� 


)
,

we can deduce the transformation law of 1
D2 � 
:

s

(
1

D2
� 


)
= 1

D2
� (s
) − 1

D2
� (sD2) �

(
1

D2
� 


)
.

Substitution of (13) and (14) into this relation leads to the conclusion that 1
D2 � 
 transforms

in the same manner as 
,

s

(
1

D2
� 


)
= ig

[
c �,

1

D2
� 


]
, (15)

whence result (12).
Consider now the following action for the U(1) gauge field Aµ in four-dimensional

non-commutative Euclidean space:

�(0) = Sinv + Sgf,

Sinv =
∫

d4x

[
1

4
Fµν � Fµν +

β

4

(
1

D̃2
� F̃

)
�

(
1

D̃2
� F̃

)]
,

Sgf = s

∫
d4x c̄ �

[ (
1 +

γ

��̃

)
∂µAµ − 1

2
B

]

=
∫

d4x

[
B �

(
1 +

γ

��̃

)
∂µAµ − 1

2
B � B − c̄ �

(
1 +

γ

��̃

)
∂µDµc

]
.

(16)

Here, β and γ are constants, and the term parametrized by γ has been introduced in order to
improve the IR behaviour in the ghost sector. (For γ → 0, one recovers the Feynman gauge
expression.) Furthermore, �̃ = ∂̃µ∂̃µ and ∂̃µ = θµν∂

ν .
The action �(0) is invariant under the BRST transformations (11), (12). Its bilinear part

Sbil yields the following equations of motion for the free fields:

0 = δSbil

δAν
= −(�δνµ − ∂ν∂µ)Aµ +

β

�̃2
∂̃ν ∂̃µAµ −

(
1 +

γ

��̃

)
∂νB,

0 = δSbil

δB
=

(
1 +

γ

��̃

)
∂µAµ − B, (17)

0 = δSbil

δc̄
= −

(
1 +

γ

��̃

)
�c.

This leads to the following propagators in momentum space:

GA
µν(k) = 1

k2

(
δµν +

kµkν

k2
− kµkν

k2
(
1 + γ

k2 k̃2

)2 − β
k̃µk̃ν

(k̃2)2
(
k2 + β

k̃2

))
,

Gc̄c(k) = 1

k2 + γ

k̃2

. (18)

Since the gauge field propagator GA
µν involves an overall factor 1

k2 , it is not damped for k → 0
and one may argue that it does not sufficiently mix long and short scales. If one takes this
issue of ‘mixing’ more seriously, one is led to the alternative model presented in the following
section.

4
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3. New gauge field model II

Considering that the scaling behaviour of propagator (2) of Gurau et al [1] ensures the IR
finiteness of their model, we look for a BRST invariant action leading to a similar propagator for
the U(1) gauge field Aµ. Accordingly, we introduce the following action in four-dimensional
non-commutative Euclidean space:

�(0) = Sinv + Sgf,

Sinv =
∫

d4x

[
1

4
Fµν � Fµν +

1

4
Fµν �

1

D2D̃2
� Fµν

]
,

Sgf = s

∫
d4x c̄ �

[ (
1 +

1

��̃

)
∂µAµ − α

2
B

]

=
∫

d4x

[
B �

(
1 +

1

��̃

)
∂µAµ − α

2
B � B − c̄ �

(
1 +

1

��̃

)
∂µDµc

]
.

(19)

Here, α is a real parameter and 1
D2D̃2 � Fµν is again to be understood as a formal power series

in the gauge field Aµ. The functional �(0) is invariant under the BRST transformations (11)
which imply

s

(
1

D2D̃2
� Fµν

)
= ig

[
c �,

1

D2D̃2
� Fµν

]
. (20)

The bilinear part of the action now leads to the following equations of motion for the free
fields:

0 = δSbil

δAν
= −

(
1 +

1

��̃

) (
�δνµ − ∂ν∂µ

)
Aµ −

(
1 +

1

��̃

)
∂νB,

0 = δSbil

δB
=

(
1 +

1

��̃

)
∂µAµ − αB, (21)

0 = δSbil

δc̄
= −

(
1 +

1

��̃

)
�c.

Hence, we get the following propagators in momentum space:

GA
µν(k) = 1

k2 + 1
k̃2

(
−δµν +

kµkν

k2
− α

kµkν

k2 + 1
k̃2

)
,

Gc̄c(k) = 1

k2 + 1
k̃2

.

(22)

If one chooses the Landau gauge α = 0 for the gauge parameter, then the gauge field propagator
simplifies to

GA
µν(k) = 1

k2 + 1
k̃2

(
−δµν +

kµkν

k2

)
. (23)

4. Concluding remarks

In the preceding sections, we introduced two natural models for non-commutative U(1) gauge
fields. These models are both BRST invariant and translation invariant, and they are devised
for curing the UV/IR mixing problem. The second model has the advantage that the gauge
field propagator has an improved ‘damping’ behaviour for vanishing momentum. The question

5
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of whether this property is sufficient for ensuring the renormalizability of the model obviously
requires further and more involved investigations (work in progress).
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